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A DIRECT EULERIAN MUSCL SCHEME FOR
GAS DYNAMICS*

PHILLIP COLELLAY

Ahstract. We present a second order extension of Godunov's method for gas dvnamics in Eulerian
coordinates patterned after van Leer’s MUSCL scheme for gas dynamics in Lagrangian coordinates. The
present method performs the Eulerian calculation in a single step by solving Riemann problems and
characteristic equations for the fluxes in the Eulerian frame. We also make several modifications in the
formulation of MUSCL. applicable to both this scheme and to the original Lagrangian scheme, all aimed
at making a more robust and accurate scheme. We present the results of test caclulations in one and two
space variables.
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1. Introduction. In [7], van Leer described MUSCL, a second order accurate
extension of Godunov’s method [4], [S] for solving the equations of gas dynamics in
one space variable in Lagrangian coordinates. van Leer presented this Lagrangian
scheme as the core of a multidimensional Eulerian code, developed by van Leer and
Woodward [8]. One time step of a one-dimensional Eulerian calculation is done by
performing a one-dimensional Lagrangian step, then mapping the results back to a
fixed Eulerian grid. The multidimensional algorithm is obtained by using the one-
dimensional Eulerian algorithm with operator splitting.

In this paper, we present a different MUSCL algorithm, based on some of the
ideas in[7], for computing gas dynamics in Eulerian coordinates in one space dimension.
The present algorithm is not formulated as a Lagrangian step, followed by a remap.,
but performs the Eulerian calculation in a single step. This direct Eulerian MUSCL
bears the same relation to the nonlinear Eulerian Godunov algorithm discussed in
[1].[5]. as the Lagrangian MUSCL does to Godunov’s method in Lagrangian coordin-
ates. As in [7]. the extension to multidimensional calculations is then performed using
operator splitting.

Because we work in Eulerian coordinates, the details of the direct Eulerian
algorithm are substantially different than those of the Lagrangian scheme. In MUSCL,
dissipation at shocks is introduced by the constant reaveraging of a discrete travelling
wave solution on the mesh. Since shocks always move relative to the mesh in Lagrangian
coordinates, there is always introduced a certain minimum amount of dissipation in
the solution near shocks in Lagrangian calculations. In Eulerian coordinates, it is
possible to have nearly stationary shocks where the dissipation vanishes; consequently,
it is necessary to introduce dissipative mechanisms for strong nonlinear waves beyond
those described in [7]. More generally, care is required at places where one of the
characteristic speeds associated with sound waves vanishes. This, plus the additional
logic involved with both solving the Riemann problem and tracing characteristics in
the Eulerian frame, make for a slightly more complicated algorithm than the simplest
form of the 1D Lagrange plus remap MUSCL discussed in [7]. On the other hand.
there is no remap to perform. Furthermore, we introduce some innovations whose
analogues are not present in the Lagrangian method in [7]. In particular, we use the
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EULERIAN MUSCL FOR GAS DYNAMICS 105

simplified Riemann problem solver discussed in [1]. Also, we derive the slopes of the
distributions of the dependent variables from the average values. rather than treating
them as separate dependent variables, as was done in the code which generated the
results presented in [7]; thus, the present one-dimensional algorithm is compatible
with any multidimensional Eulerian code which performs its hydrodynamics calculation
in a series of one-dimensional passes. The interpolation algorithm for deriving the
slopes is slightly more complicated than the second order central difference algorithm
discussed in [7], but yields a steeper representation of discontinuities, particularly
contact discontinuities. Finally, we take advantage of the fact that for gas dynamics,
the characteristic equations for the hydrodynamic waves are well approximated by the
shock jump relations for the waves of the opposite family. We exploit this relation in
such a way that the solution of the characteristic equations reproduces the correct
shock jump relations in the presence of strong gradients.

2. Description of the method. We will be constructing approximate solutions to
Euler’s equations describing the motion of an inviscid compressible fluid in one space
variable r: ‘

al a(AF) oH

— +—=0,
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Here V =V(r) is a generalized volume coordinate, A(r)=dV/dr. These equations
describe one-dimensional inviscid compressible flow with either planar, cylindrical, or
spherical symmetry, or flow in a duct whose cross-section at r is A(r), depending on
whether V(r)=r, r’/2, r'/3, or |, A(r) dr. respectively. Here p is the density. u is
the component of velocity in the direction of the one-dimensional sweep, v is the
component of velocity orthogonal to u (hereafter, u and v will be referred to as the
velocity and transverse velocity, respectively), and E is the total energy per unit mass.
We define e, the internal energy per unit mass, and p, the pressure, as

e=FE—YNu"+0vY), p=(y—1)pe

where vy is the ratio of specific heats. Throughout this paper, y will be assumed to be
a constant, y> 1 (polytropic gas); for a discussion of the modifications required for a
more general equation of state, see Colella and Glaz [2].

There are several other derived quantities which will be of interest: 7, the specific
volume, ¢, the speed of sound, and A, the three characteristic velocities:

1 ‘ /
T=T(U)=;, =c(U) = 23—) A=A (U)=uzxc, AJ(U)=u.

Let At be a time increment, ., the boundary between zones j and j+1, and
define fi:%(r_,wl/z*'rif—i/z), Afj=’j+|,/3“r/~1,/z~, and A‘/j: V("ju/z)“ V(’j—«l/‘z)- We
assume that, at time ", we know U7, the averages of the conserved quantities across
each zone:

U 1 Tiw1/2 U ) dV.
M rt" .
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We wish to compute U}, the averages of the conserved quantities at the new time
=1 AL

1

L]'r_H |
! AV,

Fivyin
J' Ut dv.
e

In outline, the procedure followed by MUSCL for calculating U} can be divided
into five steps:

1) Compute linear profiles of the dependent variables in each zone by interpolating
slopes at the centers of zones, subject to certain monotonicity constraints. This gives
rise to a global distribution of the dependent variables which is piecewise linear, linear
in each zone, with jump discontinuities at the edges of zones.

2) Compute U}, the solution at the old time at the edges of zones, by solving
the Riemann problems which resolve the jump discontinuities at the edges of the zones.

3) Compute U}\\),. an approximation to the solution at the edge of the zones at
the new time, by tracing approximate characteristics, and solving difference approxima-
tions to the characteristic equations.

4) Compute time-averaged values of F and H, using the values computed in 2)
and 3). and the following formula:

At . o v . ,
F,» 1/2 ‘:A,)_ (,:( l./;'¢|2)+ F( 17;1:|‘/3)) :J F( L](.r/q.”]'. 1) dt+ O(Af‘ + A’;Af),

n

At . o .
oo == (HOU Y, )+ HOU ) =J H(U(r 50 1) di+ O +ATAF).

5) Calculate the conserved quantities using divided differences of the values
calculated in 4):

AjaFiv = A2 . (Hjs1y2—H;1)2)
AV; Ar; '

(2.2) Uprtt= -

Clearly, most of the work in this algorithm is in steps 1)-3). We will proceed to describe
those steps in more detail.

Step 1. Interpolation of slopes. Given our discrete data U}, we will interpolate a
global description for our dependent variables at all points (r, t") which is piecewise
linear, and linear in each zone:

)

1 n (""‘ j
(2.3) q(r)=gq;+ 5‘];"""A_r__]_s P2 ST <Tjty/2
7

Here g = q(U) represents any useful flow variable, conserved or not. For g =p, p, u, v,
we will take ;' =q(U}), and construct the slopes 8¢g; by a suitable difference formula.
The distributions of other quantities & = h(p, p, u, v) are then derived from those of
p. p. u, v in the following fashion:

G120 =47 159, Giv1/20 =qjv1— flésq/r»h q=p.p, U0

]1,'4.1/1.5‘ = h( Piv172.8 Pj+172.8 Ujq172 80 Ujs 172.8)s S=L.R,
(2.4) 511,':("/;'1/1.1‘_’” 12k )

h}l = é( hj.‘. 1/2.1. -+ h[—'I/Z,R,}*

(r=n)
Ar

h(ry=h}+6h;

- 12<r< Fivgsae
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In the case of equally spaced zones Ar;=Ar, &q; is calculated using the following
two-step algorithm. We first calculate &;q;, a first guess to the slope using the monoton-
ized central difference algorithm discussed in [7].

5 _{mindq}l.—q}'l,lq}’—q}lnl)Z if (g1 —q7)(q] —q;-1) > 0.

ONimY; = :
0 otherwise,

(2.5)

6/q; = min (I%—HE‘(JF—‘L 5umq;> sgn (‘Ij+1 “%‘---1)-

Finally, we calculate 8q; by differencing the values at two points on either side of
r obtained by using the interpolant given using 8;q as the slope:

(2.6) oq; = min {%"Iﬂ-»x ‘35/%41 —gj-i *%5/%»1!’ 5la.an} sgn (CI,'+1 - q,_;),
.6
5(1[ = 6(‘]#2» T, q,'+,z)-

To obtain d8q; in the case of unequal zones, calculate 5q,»=6(q,»_2, T Giea), O =

S(rj 5+ ++ . rua), using (2.6). Then we calculate
- [15¢] 2lg;+1— g, 2lg;— g
(2.7) 8q; = Ar; min {W }Xr,- =, ]Ar,»/ = (580 (g1 —gj-1).

In the case where the minima in (2.5)-(2.7) are obtained in the first arguments, one
obtains

0g; _ (%(qﬂ—l —qj-1)— Tli(q”z —gj-2))

Ar] (%(rjﬂ_"jﬂ)“‘llﬁ(r,wz‘“rj—z)) '

which is a fourth order finite difference approximation to dq/dr|,,., and thus is well
behaved in regions where the solution is smooth. The fact that 8q; is obtained from
drq, a monotonized first guess, gives rise to steeper profiles representing discontinuities
than those obtained using either the fourth order accurate formula by itself, or by
setting 6q; = §,q;, as was suggested in [7].

There are situations, however, in which the above slope setting procedure leads
to profiles which are too steep, in the sense that the scheme will not provide sufficient
dissipation to ensure that the correct amount of entropy production occurs. This
situation arises when the speed of the characteristic of the family associated with the
shock changes sign across the shock, i.e., where the shock is nearly stagnant. In such
situations, the calculation remains stable, but there is a small amplitude (<5%), low
frequency error in the post shock values generated at the shock. In this case, we reduce
the slopes computed by the above procedure by some fraction y;, 0= x; = 1: g/ =
8q;x;. We want y; to have the following properties. If the jth zone is not inside a shock,
or if the jth zone is inside the shock, but the speed of the characteristics of the family
associated with that shock does not change sign, then x;=1. If the jth zone is inside a
shock having zero velocity, then x; =0, thus reducing the method locally to Godunov’s
method. Intermediate cases should have an intermediate amount of flattening. Finally,
x; =1 if there is not the possibility of a significant amount of entropy production across
the zone. The formula given below for y; satisfies the above requirements.

W}?'=|Pj+l _pj~1]/

S;p=sgn (P = Pjx1),

1 1

Pi+1 Di-1
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Ajr = Upr +8Cia0s A = Ui 855G
=i
(,]f = + S,‘lrllq,sf,
P+
IU'I . IP'+1 P 1]
! &p —— e AjRAGLS and (1 — ;1) <0,

v =1 U +min (A ] [ARD min (psy, pi1)

1 otherwise,
y;=max (0, 1 —=(1—=x;)/n).

Here 0<n =1 and ¢, is the minimum pressure jump which would be considered a
shock; in the calculations presented here n =3, g, =1.

Steps 2-3. Calculation of interface valués. We must calculate U}, UL
approximate values to the solution at the old and new times, at the zone edges 7>
To obtain U}, .. we calculate the solution to the Riemann problem. Since the solution
to be obtained from the Riemann problem is for an infinitesimal time after the
breakdown of the initial jump, the geometric source terms have no effect on the
solution, so that the Riemann problem we solve is for the equations of gas dynamics
in Cartesian coordinates. As is well known (for a detailed discussion, see Collella [1],
and the references cited there), the solution to that Riemann problem with left and
right states U, , Ug is ¢((r/t), Uy, Ug); i.e., it depends on r, f only in the ratio r/t.

To calculate U},,,,, we take our states

Up, Ug = LI;H/Z.L» 1"1+|/2,R
(see Fig. 1), and set
' ]"’.;,;/3 = l[l(ow UI , UR)

q
._.__*—___% r
q/+1f'2./,/
R qiv1i2R
| | |
T T T
Fiq rian s
2 j+2 32

Fi1G. 1. Spatial distribution of q at initial time 1",
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If U"(r. t) is the exact solution to the initial value problem given by the global piecewise
linear distribution (2.3), then lim,,» U"(r4y,2, 1) = U}41,2. As was the case for the
Eulerian Godunov’s method, the approximate Riemann problem solver described in
[1] appears to be both inexpensive and sufficiently accurate, without introducing
rarefaction shocks into the solution.

To calculate U™, we solve a finite difference approximation to the characteristic
equations, which we review briefly below. Given a solution U(x, 1) to (2.1), we say
that a curve o, 4~ (r(o. o), 1(0.y)) is a characteristic of the +, —, 0 family if U is
continuous in a neighborhood of that curve, and if the following ordinary differential
equations hold

(2.8) dr A dt
. .0 dU'_l,‘” +.0s d(T k]
1 dp du A’
9). — 4 e =0,
(2.9) pcdo, do, A ue=0
dr 1 dp

(2930 doy  (pc)* doy
Here dh/do =(d/do)(h(r(o),t(c))) and all functions of (r,t) are evaluated at
(r(o), t{o)).

The equations (2.8), (2.9) completely describe the solution in regions where U
is continuous or near contact discontinuities. However, in the neighborhood of a shock,
the equations (2.9) no longer hold along the curves described by (2.8), and some
modification to the equations must be introduced which takes into account this fact.

Our strategy for calculating U/.,,, proceed as follows, considering, for the
moment. the case dA/dr=0. First, we find approximations to the paths described by
(2.8). o which intersect the point(r;.y,», ¢ ", taking due care to trace backwards to
the origins of Lentered rarefaction fans if (7.5, t) t>1t" is inside such a fan. Then we
Lalculate U,4 e in three stages. First, we solve a pair of nonlinear algebraic equations
for pj, , 5, u,+,, 2, given the values of the solution at the base of the +, — characteristics.
These are the same nonlinear algebraic equations as those for the values of p, u between
the two sonic waves in the Riemann problem with left and right states, given by,
respectively, the values of the solution at the base of the + and — characteristics.
Intuitively, what we are doing is lumping all the waves of the + (resp. —) family which
are crossed by the — (resp. +) characteristic into a single shock or rarefaction shock
jump. In the case where the solution is continuously differentiable, we obtain a nonlinear
finite difference approximation to (2.9).. If the solution is not smooth, this procedure
gives values for p}.\,,, u}+}» which are well behaved. We then solve an explicit equation
for the p}.}'2, given the value of the solution at time 1" and that of p},}!,,, which again
lumps the pressure wave crossing the streamline into a single shock or rarefaction
shock. In the limit that the pressure jump is small, we similarly obtain a solution to a
finite difference approximation to (2.9),. Finally, v/i"}, is just set equal to its value at
the base of the approximate characteristic of the O-family.

We now give the details of the procedure outlined above. First, we want to
determine points (#;.1,2.4, t") such that (rjy /2.4, t") and (ry,2, t"*") are connected
by a straight line which approximates a solution to (2.8).. To this end, we define
Arfiy e s, r;g»n/z,#’ q}il/z.#- 5‘]}1!/2.# q =P, p, U U, Ay, as follows:

(@1, 8q; -1 Ay, 1, 1) iEAL(UJL2) 20,
tr r tr tr _ ] 7 J ] / ]
iz Basuassn Atz it az) {(qf, 8q; Ar 1y = 1) if Au(UT12) <0,
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These are the quantities which describe the linear distribution of the dependent
variables in the zone which contains (7,1 .., t"). Given these quantities, we define
Fiyy/2.# to be
1.t tr t
=810 P A 0w A/AT o

ad = P ‘

1 + 8/\]"4,]’,/2'# Ar/Ar]';_l/'gh,‘g

(2.10)

Fivrras = 2™ 5;; 1/2.» Max (min (d, L:)» "]:) Ar,'-ﬁ, 1/2.#-

In the case where the maxima and minima are obtained in their first arguments,
this is a formula for the point where a straight line with slope A.(r;.,,..) passing
through the point (7;,,,, t""") intersects the line {r = "} (Fig. 2). If we were integrating
asingle conservation law, this line would coincide exactly with the characteristic through
(rii1,2, 17", given that the characteristic velocity had the linear distribution given by
(2.4). To the extent that we use (2.10) for a system. we are neglecting the effect of
the interaction between waves of different families on the wave speeds in tracing the
characteristics. This introduces an O(Ar},,,» «A1) error into the value of Tint/2.5.

| J ! g
; T T '
‘\ dr
ar ()
0 Ay 7)) 17)
1. % % ... ,,,
Gravae = qr(e") ") )
fienin Tiv12 PR
IR

F1G. 2. Approximate solution to the characteristic equation of the # family.

Given rj4 /5 4. we can also define ¢;.,,,.., the value of the solution at the base of

the characteristic passing through (7,5, t"):
r —rf
_ _ /2 T Vv 2% o o —
(2.11) Giv172.4=q(Fir22) =100t AFT 3G 1724 q=p.p.u 0
JH1/2.#

In the case that U},,,; came from evaluating the solution of the Riemann problem
inside a centered rarefaction fan of the + or — family, we assume that the characteristic
of that family passing through the point (riv12. t""") originates from the Riemann
problem at (r;y /5, t") and define r;, 5 4, Q1,2+ accordingly:

— —_ g —
itz = Taisas Giatjow =G0 q=Pp,p, U, 0.

n+1

Given qiy2.4. q=p,pou, v, #=0,+,—, we can now express p,’~'++,',_7,p,-+,/3,

n4+1 +1 . . . . o
Ui, Ujyyy2 in terms of those quantities. First, we require that pidtae i, satisty
the pair of equations

(F jH1/2 l + 2;&) n+
/ I+1/e 1
;i—(u]A;.] 2 1174.],1‘)—0,

n+1
W(Pistias Pivi/2es Piersas)

, +1 p¥*— 172
W(p*,p~p>=(ypp(l+~y—£p——£)) :
2y p

(2.12)



EULERIAN MUSCL FOR GAS DYNAMICS 111

I pirae=piarys ], ltis1/20 =145, 1> | are O(Ar;, Aryyy), then this is just a finite differ-
ence approximation to (2.9),. If either the quantities Ptz = Pisiso L. [ty s —
Uji1/2.4] is O(1), then we have the interpretation of the equations (2.12) given above.
The equations (2.12) for p"*', u™*"' are exactly the ones given in [1] for the central
pressure and velocity for the approximate Riemann problem solver given in [1], and
the iteration scheme given there can be used to solve (2.12) for p™*t umtt,

n+i

5 . ) L .
The value for p''},, v 55 are given by the following explicit ex Fessions:
ﬂ/ 1/2 J+1/2 & 2 g

nel (___ 1 o (]«’;'lai"li,g:‘ Pit172.0) ) o

Pj+172= n+1 2
Pivi20  W( P2 Pisis2.05 Py 1/2.0)

(2.13)
n4l
Ujvi72= Ujnya0-

Again, if [} s = piey 20l is small, then (2.13) is a finite difference approximation to
(2.9)o. If the pressure jump is large. then the change in density is given by lumping
all of the pressure variation along the streamline into a single shock or rarefaction
shock jump. An immediate consequence of the above formulas is that, if all of the
slopes on either side r;,,,, are zero, then Ui\, = U7, and we recover Godunov’s
method. with the Riemann problem solution algorithm in [1], for calculating the fluxes.

In the case where A’ 0, we want to include the effect of the source terms in the
caleulation of p"*!, ™!yt peg gt """, be the values obtained by the
procedure leading up to the equations (2.12) i.e., not including the effect of source
terms. We obtain p}.}, uj) ), by solving the following set of linear equations, which
approximate (2.9),

A'(Fpy )
n+1 n+1 JH1/2.+ . .
W ”'(pj-#l/z_pjﬂ/2_+)i(”,‘-r1/2_11,'4 T Uit /2.4Cay . =10,

where W. = W(p o iy piayns) and 1720 = C(ray0) have already been
obtained above in calculating the solution without source terms. After a little algebra,
one finds

H,’ F1/2 4 C,'Jr 172+

—n-1 (A,(rj'+[/‘2,+)

n+1
A =D, 15—
Pi+1/2=DPjv1/2 AUy )
Allri,.0) ) W, W
T T T Wiy Gy o | A
A(rpyy,) TR W, + W,

At (&M.A'(r,-.,,,,,_ )
‘V++ W /-\(r,-.. 1/2.- )

(2.14)

n+1l  __ —n+1
Ujri/o=Uj 0+

ul‘+ ]."_7.'*(\[" /2.~

W, A'(rjug:ﬁ 1 X )
Alryae) fivi/24Cw104 ).
Given p}i,, ul ), the values for the other variables are obtained using (2.13).
This completes the calculation of Uiiisa, UMY, These values are then inserted
into (2.2) to obtain U}*', the conserved quantities at the new time. The time step
must satisfy the usual CFL condition for stability:

A
(2.15) At = o max (-—-~—————>

7

where 0 <o < 1. The smallest & for which (2.15) is satisfied is called the CFL number
for that time step of the calculation.
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3. Numerical results.

Boundary conditions. In order to calculate U}'“, J=M;, -, My, it suffices to
specify g, (8q);, j=M, =1, -+, Mg+1. Then one has sufficient data to calculate
Uliya, UL j=M =1, Mg, and the U}™"s. If we can specify g/, j=
M;—3,---,Mr+3, then it follows from (2.6) that we can calculate &g, j=
M;—1.---,Mgr+1. In one dimension, or for two-dimensional problems for which
the boundaries are aligned with the mesh directions, this is straightforward. For
example, for the left boundary, we have

Reflecting wall:  Gag,—1 = Qugj+1-15 Ungy—1 = Ung, 4115
Continuation: Art—1 = Gagy+1-15
Inflow: qr—1=qo(1"),

where g = p, p, v for the reflecting wall, and g = p, p, v, u for the subsequent boundary
conditions, with /=1, 2, 3. For a reflecting wall, we have chosen to change the slope
limiting procedure slightly. We allow the values extrapolated to the wall to take on
the values which are obtained at the wall by solving a Riemann problem with left and
right states (U, Ug) = (U}, -1, U}y, ). This procedure seems to improve the resolution
of shock reflections in multidimensional calculations.

Specifically, we define py,, to be one of the roots of

(3.1 u {:m W ( Prim» Pat,» PM,,)Z = (Piim— P, )*’=0
where py;,, is the root = p, if uy, =0. Then we define
1 Piim — Pm )l
‘im:O* im = m‘——ﬁ’ .
“l o (PM, w-

These are used in the equations for 8nqar, a1, - 4 =p» p, U:

Spi = ‘min (2’%»:, 4l 21511\4,, ~Ginl) if (@nr, = G (Gim = Grr, ) > 0,
limda, 0 otherwise,

Sy q = {mih (zlqu - ql\hnll’ z‘qf\‘h - q”"‘b if (qML - CI]im)(qlim ~ "') >0,
hmYarn 0 Other\vise-

The corresponding procedure for a reflecting wall at My, is obtained by exchanging
>, <t in choosing the root of (3.1), and replacing M, +1, M,, M, —1 with My —1,
Mg, Mp+1.

If un, ,, is the axis of symmetry for a cylindrically or spherically symmetric
problem, then we treat it as a reflecting wall, except that the geometric source terms
+ucA’'/A in the characteristic equations (2.9) are set equal to zero in calculating
Uiy Ui ien Gty =qhn L.

Finally, in the diverging duct problem discussed below, we use a characteristic
boundary condition at the right-hand side of the duct. The density p, is specified to
be a constant at the right end of the duct. Then, as a function of time values of p, u
are specified using the characteristic equations, using the assumption that the —, 0
characteristics point to the right:

Y
Po _— .
Prtr1 = Pov Prg+1 = ( ) Prats PC= %(\/.DMRPMR’}/ +\/p:\1R-HPM,¢+ 522
Prg
(3.2) )
)1’ - {
Unppr1 = Ungp — U ‘!Rﬁl_. Do .
pc
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Test problems. This method has been tested on a variety of test problems in one
space dimension, including shock tubes in Cartesian, cylindrical and spherical geometry.
Results were obtained for one-dimensinal problems which were indistinguishable from
those shown in [7] and [1], obtained using the Lagrange plus remap MUSCL. This
method has also been used to calculate the oblique reflection of a shock against an
inclined plane in two space variables [11], successfully resolving multiple Mach stem
configurations.

We present here two test calculations. As a one-dimensional test problem. we
calculated the steady state solution to the duct flow problem in Shubin, Stephens, and
Glaz [6], marching in time until the steady state was reached. The duct is specified by
A(r)=1.398+.347 tanh (.87 —4), 0= r= 10. with boundary conditions

p(0.1)=.3809, p(0,1)=.502, u(0,t)= 1.299, p(10, 1) =.776, r=0.

The initial conditions are given by setting g(x, 0)=¢(0,0), i.e., impulsive start.
Inflow boundary conditions are imposed at the left boundary, and the characteristic
boundary conditions (3.2) are imposed at the right boundary. The density profiles at
t =200 are shown in Fig. 3, for Ar=13 and Ar=1%, plotted as a dotted line. with circles

DT =0.21189E +00 TIME = 0.20000E + 03 NSTP =942
1.00 T y T T T v T T v T T T T T ¥ T ¥ y v
L
d 5
€
n
N 0.80 |- B
I, L L L] L2 R
N |
. { J
;
i
{ - H -
1.60 ; ]
i
o ; 1
4
‘
'
0.40 -
I 1
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at the data points. This is to be compared with the exact solution, plotted as a solid
line. We obtain good agreement with the exact solution, even for the coarsely zoned
calculation.

We also calculated the two-dimensional Cartesian shock reflection problem used
by van Leer [7] as a test problem for the Lagrange plus remap versions of MUSCL;
see also Woodward and Colella [9]. The computational domain is a channel of length
3 in the x direction, and of width 1 at the left end in the y direction, with a step of
height 2 extending to the right beginning at x =6. The step and the upper and lower
walls of the channel are reflecting boundaries, with a Mach 3 uniform inflow on the
left, and continuation boundary conditions on the right. The initial conditions are that
of uniform flow throughout the channel:

px,y,0)=1, p(x,y0)=14, ulx, y.00=3, ul(x,y0)=0.

In Figs. 4 and 5, we show the density and pressure contours of the solution at
t=4, with Ax=Ay=.1 and .05, respectively. The first shock reflection point along
the upper wall has been seen in other calculations [9] to be a Mach reflection, located
directly above the edge of the step. The present calculations obtain the correct location
of the reflection point, although the Mach stem in the Ax=.1 is two zones long;
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F1G. 4. Contour plots for two-dimensional test problem, Ax = 1. a) Density, 30 contours between 98 and

6.38. 1) Pressure. 30 contours between 1.1 and 11.6.

consequently, the slip line extending to the right from the triple point is not resolved.
as it is in the Ax =.05 calculation. The other reflected shocks are well resolved in both
calculations, even though they are quite weak.

These results represent an improvement over the the results in [7]in two respects.
First, the overall resolution of the shocks, particularly in the Ax =] calculation, is
substantially better. Second. the numerical boundary layer generated at the corner
along the upper surface of the step is far weaker than that generated in the Lagrange
plus remap results. In the latter calculation, the boundary layer separates at x = 1.
changing somewhat the shock pattern downstream. The numerical boundary layer
does not separate in the present calculations.

These two-dimensional problems were run on the Cray-1 at LLNL using a fully
vectorized implementation of the algorithm, the Ax =] calculation taking .066 minutes
to run 194 time steps, and the Ax = .05 calculation taking .36 minutes to run 376 time
steps. However, the vector lengths in these calculations were that of the number of
zones in a one-dimensional sweep. and were hence too short to observe the full speed
of a fully vectorized calculation on the Cray. A more typical speed for larger problems
is 20 us/zone/time step/dimension.
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4. Discussion and conclusions. The direct Eulerian MUSCL algorithm described
above follows the basic conceptual framework given by van Leer for the Lagrangian
MUSCL scheme. There are, however, substantial technical differences, all aimed at
producing a more robust, and in certain ways, simpler scheme. A central feature to
the engineering of the scheme is that of solving the characteristic equations (2.8)(2.9)
directly, rather than, as in [7], deriving a formula based on Taylor expansions, for the
time derivative of the flux. The present approach makes it much easier to account
correctly for sonic points in rarefaction waves (2.11), to introduce tracing characteristics
forward in time (2.10); and to exploit the duality between the Riemann problem and
the characteristic equations for gas dynamics by introducing the nonlinear algorithm
for calculating U, The latter two procedures were essential for calculating strong
shocks with CFL numbers close to 1, and appear to be necessary for Lagrangian
calculations using MUSCL as well [12].

We have presented here the basic framework for extending the Lagrangian
algorithm of van Leer to Eulerian gas dynamics. This approach can be easily modified
to an arbitrary moving coordinate system, in one dimension, or a moving rectangular
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coordinate system in more than one dimension. A central issue which remains to be
fully resolved for this method. as well as other higher order extensions of Godunov's
method is controlling the behavior of such schemes when one of the characteristic
speeds, measured relative to the mesh motion, vanishes. The treatment of sonic centered
rarefaction waves and the flattening of slopes at nearly stationary shocks constitute a
first step, but more work is required. A fuller analysis of these problems appears in
[3], [10], along with some proposals for ameliorating them.
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